Costs, Confusion, and Climate Change

Justin Gundlach† and Michael A. Livermore††

In the United States, the primary tool to value greenhouse gas emissions reductions in cost-benefit analysis is the social cost of carbon (SCC), which is a metric that estimates, in monetary terms, the damages associated with climate change. Recently, some prominent public policy experts and scholars have proposed that a “marginal abatement cost” (MAC) could be used as an alternative to the SCC. Indeed, some jurisdictions, such as the United Kingdom, have integrated MAC-based approaches into climate policymaking. This Article provides conceptual clarity about these metrics, focusing on how a MAC-based threshold could sensibly be used in climate policy, and explaining why it is not a substitute for the SCC. We relate the current conversation about valuing greenhouse gas emissions to the longstanding debate over the use of prices versus quantities in climate policy formulation and the more generic regulatory question of when it is appropriate to employ cost-benefit analysis versus cost-effectiveness analysis. In addition, we use illustrative hypothetical policy contexts to explain the roles that these tools should play.

Introduction ...565
I. Making Environmental Policy ...567
 A. Analysis ..567
 B. Instrument Choice ...573
II. The Case of Climate ...575
 A. Marginal Damages of Greenhouse Gas Emissions, a.k.a. the Social Cost of Carbon ..575
 B. The Marginal Abatement Cost “Alternative” ...579
 C. Recapitulating an Old Debate ...582
III. Climate Policy in Legal Context ...585
 A. The Overarching Legal Context ...586
 B. Current Applications of the SCC by Federal and State Agencies588
 C. Potential Applications of Carbon Valuation Metrics590
Conclusion ..594

† Senior Attorney, Institute for Policy Integrity at New York University School of Law.
†† Edward F. Howrey Professor of Law, University of Virginia.
Introduction

There has long been a consensus among climate scientists that the release of greenhouse gases into the atmosphere imposes extremely serious risks on ecosystems and human societies. Beginning with the pioneering work of William Nordhaus and others in the 1990s, climate economists have engaged in a substantial research program to estimate climate-change-related damages. Among the most important outputs of that research program are estimates of the “social cost of carbon” (SCC), which expresses, in monetary terms, the harm caused by the release of greenhouse gases.\(^1\) Since the administration of President Barack Obama, the SCC has played an important role in the cost-benefit analysis of federal regulations related to the anthropogenic causes of climate change. It has also become a frequent feature of some types of environmental review and has been taken up by a range of public and private actors who must make decisions in the face of climate change risks.\(^2\)

The SCC has its share of critics. Some have argued that climate change risks are simply too uncertain to quantify with precision\(^3\) or that the quantification of such risks, while useful, should be just one of several tools that policymakers use to inform their decisions concerning climate impacts.\(^4\) Others have called for giving greater attention to the distribution of climate impacts than the SCC provides.\(^5\) There is also a host of disagreements even among those committed to an SCC framework. Important questions range from the appropriate way to model climate damages, to how future climate impacts should be discounted, to how best to address the geographic and generational distribution of climate harms.\(^6\)

1. It is technically correct to refer to the “social cost of greenhouse gases,” but here we use the term “social cost of carbon” or SCC as a shorthand both for the social cost of carbon dioxide and of other greenhouse gases, such as methane, nitrogen oxides, and hydrofluorocarbons.
Recently, critics of the SCC have emphasized an approach to climate policymaking that begins with an emissions target and then seeks to achieve that target at the lowest cost possible. To determine whether any particular policy should be adopted, a cut-off level of costs is selected that is believed to be consistent with achieving the emissions target. This cut-off is expressed in terms of “marginal abatement costs” (MAC). Generally, the marginal abatement costs of a policy are the costs to reduce the last unit of pollution (which is the most expensive to abate) under the policy. MACs differ across policies. Whether examined economy-wide or within a narrower context, a MAC identifies the costs per unit of emissions reductions of the last unit of reductions achieved before an emissions reduction target is met. Under a cost-effectiveness framework, any policy with a cost below the cut-off is adopted, while policies with higher costs are avoided.

The debate over the use of the SCC versus a MAC-based price threshold recapitulates, in a new form, longstanding debates over cost-benefit analysis versus cost-effectiveness analysis and emissions taxes versus caps. The failure to recognize the symmetry between these concepts has led to considerable confusion. The main purpose of this Article is to take a step back and explain how the current debate fits into a conversation that extends back to the dawn of the contemporary environmental movement: how best to make environmental policy. With this intellectual history in mind, it becomes much easier to take advantage of the substantial analytic discourse that has taken place in the intervening decades to understand the relevant tradeoffs involved.

It is also useful to keep in mind that different policy contexts may call for use of the SCC or a MAC-based threshold. An agency directed to take steps consistent with an explicit emissions target faces a different inquiry than one tasked with considering a wide range of economic and social factors while pursuing a particular regulatory mission. Once an agency’s mandate is understood, then the appropriate analytic framework (cost-effectiveness versus cost-benefit) and associated metric (MAC-based versus SCC) is often quite obvious. Confusion emerges when these debates are had in the abstract, without reference to the context of the particular policymaking situation.

It bears noting that the SCC is one of many tools that can be used to understand and communicate climate change risks. Some of these tools are technical but many employ narrative and qualitative elements. The proper uses of the SCC are contextual; recognizing its value in one context does not imply

7. See infra notes 72-83 and accompanying text.
8. A marginal abatement cost curve traces the incremental costs of a suite of policies or other emissions-reducing interventions, ordered from the least costly to the most expensive. Assuming that the least expensive options are adopted first, the curve predicts a marginal cost for every potential amount of emissions reduction that is achieved.
9. When evaluating the policies with co-benefits, then the appropriate consideration is net costs. For example, an energy efficiency mandate may result in fuel savings and emissions reductions. The cost of such a policy for purposes of a MAC analysis would be the costs of the technology, minus the relevant fuel savings.
10. See infra notes 39-46 and accompanying text.
that there are not other useful ways of explaining climate change risks in the broad context of political and social discourse.

This Article proceeds in three Parts. The first summarizes the functions of cost-benefit analysis and cost-effectiveness analysis in the context of environmental policy and notes how they relate to the choice of regulatory instruments that prioritize either prices or quantities. The second Part describes regulatory instruments developed for climate policy in particular and highlights the parallels between older debates over instrument choice in the environmental and more recent climate policy contexts. This Part also describes potential reasons for misalignment between the SCC and a MAC-based emissions value. The third Part puts these concepts into regulatory context, considering how they manifest under different administrative legal requirements. The third Part also summarizes the present uses of the SCC by federal and state governments before illustrating with stylized examples how different uses can be more or less apt.

I. Making Environmental Policy

Climate policy is a relatively recent outgrowth of contemporary environmental policy, which dates to about 1970.\(^{11}\) The basic task of environmental policy is to govern human activities that create environmental harms. Environmental regulators face a host of complex questions, often revolving around the appropriate level of stringency to select, and the best mechanism for achieving pollution control.\(^{12}\) The following discussion describes analytic techniques that can be used for making these decisions and a particularly important class of “instrument choice” options that are relevant for climate policy.

A. Analysis

Cost-benefit analysis is a decisionmaking rubric that seeks to illuminate how government decisions will affect the public. Grounded in the field of welfare economics,\(^{13}\) cost-benefit analysis estimates the net benefits of a policy option by converting all costs and benefits to the same unit and comparing its positive and negative effects.\(^{14}\) A well-conducted cost-benefit analysis tallies all measurable

\(^{14}\) MICHAEL GREENSTONE, TOWARD A CULTURE OF PERSISTENT REGULATORY EXPERIMENTATION AND EVALUATION, in NEW PERSPECTIVES ON REGULATION 111, 113 (D. Moss & J. Cisternino eds., 2009) (“By converting all costs and benefits to the same unit, government can avoid irrational combinations of policies that fail to maximize our well-being. The costs and benefits for one person under one policy are treated no differently than the costs and benefits for another person under another policy.”).
effects, including those that are indirect to the primary objective of the decision at issue. 15 Monetizing as much of that tally as possible enables an apples-to-apples comparison of the welfare effects of a given proposal relative to alternatives, including inaction. 16 Supporters of the technique argue that it can improve government decisionmaking by imposing transparency, facilitating accountability, and improving the quality of agency deliberations and analysis. 17

Cost-effectiveness analysis is another form of regulatory impact analysis that can add rigor and transparency to decisions about environmental policy. 18 Unlike cost-benefit analysis, cost-effectiveness analysis does not assess the value to society of a given objective in terms of public welfare. 19 Rather, it takes that decision’s objective as given and “compare[s] a set of regulatory actions with the same primary outcome,” assessing how efficiently each of those alternatives would accomplish that outcome. 20 Consistent with this distinction, the outputs of cost-effectiveness analysis include the monetized, incremental costs of achieving an objective, but not the comparably monetized incremental benefits of doing so. 21 Stated another way, cost-effectiveness analysis is half of a cost-benefit analysis, with an exclusive focus on costs, and no express information about benefits—only an implicit assumption of their value, often in the form of a threshold. 22

15 OFF. OF MGMT. & BUDGET, EXEC. OFF. OF THE PRESIDENT, CIRCULAR A-4 26 (2003) [hereafter CIRCULAR A-4]; see also DAVID PEARCE, OECD, COST-BENEFIT ANALYSIS AND THE ENVIRONMENT: RECENT DEVELOPMENTS 56 (2006) (“Any impact of the policy that affects individuals’ well-being is therefore a proper impact for inclusion in the CBA.”).

16 CIRCULAR A-4, supra note 15, at 15-17.

18 OECD, REGULATORY IMPACT ANALYSIS: A TOOL FOR POLICY COHERENCE 13 (2009); see also CIRCULAR A-4, supra note 15, at 9-14 (describing cost-effectiveness analysis and some of its applications); GERBERT ROMN & GUSTA RENES, NETHERLANDS BUR. FOR ECON. POL’Y ANALYSIS & ENV’T ASSESSMENT AGENCY, GENERAL GUIDANCE FOR COST-BENEFIT ANALYSIS 40 (2013).

19 ROMN & RENES, supra note 18, at 40 (suggesting use of cost-effectiveness analysis when “the goal of the policy is not at issue and is not a subject of study”).

20 CIRCULAR A-4, supra note 15, at 11; see also ROMN & RENES, supra note 18, at 40 (emphasizing that the quality of cost-effectiveness analysis is enhanced by consistency of costs and performance measures (i.e., “effectiveness”) across alternatives for comparison).

21 CIRCULAR A-4, supra note 15, at 11 (“Cost-effectiveness analysis can provide a rigorous way to identify options that achieve the most effective use of the resources available without requiring monetization of all the relevant benefits or costs.”). Importantly, the comparison is not just of costs, but net costs, so that two options that both satisfy a cost-effectiveness criterion can still be compared based on which of them would perform more cost-effectively than the other.

22 In the environmental context, cost-effectiveness analysis is typically expressed in terms of cost per unit of emissions reduction. Cost-effectiveness analysis does not require a threshold to guide decisionmaking about more and less cost-effective emissions reducing options, but thresholds are a conventional feature of such analysis. Any number of factors can serve as the basis for a threshold. See infra notes 66-76 and accompanying text.
Figures 1 and 2 help illustrate the relationship between cost-effectiveness analysis and cost-benefit analysis, and how they are used in environmental policymaking. Both figures express environmental harms and the costs of abating emissions in monetary terms. The marginal cost of abatement is highest where emissions are lowest because lower-cost abatement strategies have already been deployed. The marginal cost of damages increases with emissions—that is, as pollution increases, the incremental harm of each unit of pollution also increases.

An ideal cost-benefit analysis would be based on information on marginal damages and marginal abatement costs, both expressed in monetary units as a function of emissions. The benefit of emissions reduction is avoiding the harms expressed in the marginal damages curve, shown in Figure 1 as the area under the “marginal damages” curve. Information on marginal abatement costs is expressed in terms of emissions reduced. As the stringency of policy increases—that is, as more emissions are reduced—the monetary costs of each incremental unit of pollution reduction also increase. The goal of cost-benefit analysis is to maximize net benefits, which occurs at the point where marginal abatement costs and marginal damages are equal—the “optimal target” in Figure 1. If marginal damages are greater than marginal abatement costs, then net benefits can be increased by reducing emissions, since the cost of doing so is less than the value of the harm avoided. (See Figure 2, panel B.) If marginal damages are less than marginal abatement costs, the opposite is true: net benefits can be increased by reducing stringency since the value of the harm avoided is less than the monetary cost of the last unit of emissions reduction. (See Figure 2, panel A.)
Cost-effectiveness analysis provides half of this picture. It is based entirely on the marginal abatement cost curve and does not include any information on marginal damages. The social decisionmaker can, for one reason or another, set a target, which will line up with a point on the marginal abatement curve. The target may be too stringent (Figure 2, panel A) or too weak (Figure 2, panel B); cost-effectiveness has nothing to say on this question. Cost-effectiveness analysis can be useful, however, in identifying more or less expensive ways to achieve a given pollution-control goal.

By lining up the possible options in terms of their price per unit of emissions reduction, cost-effectiveness analysis guides policies toward the cheapest alternative. A thoroughgoing application of cost-effectiveness analysis results in the equalization of marginal abatement costs across the entire economy. This occurs because differential marginal abatement costs imply that some lower-cost alternatives are not being taken advantage of. If an optimal goal is set, then net benefits will be maximized if cost-effectiveness analysis is used. Cost-effectiveness analysis can be used to evaluate command-and-control regulation, but it could be used to set a price on emissions as well.

An example can help make this a bit more concrete. Pursuant to the Clean Air Act, the Environmental Protection Agency (EPA) establishes National

23. The optimal goal would equalize marginal costs and marginal benefits. Cost-effectiveness takes account of ancillary effects because the MAC curve is based on net costs.

24. The term “command-and-control” encompasses pollution limits as well as technology and performance-based standards. It is distinct from market-based mechanisms that have dynamic elements and act through prices.

25. It could also set a quantity, if the social decisionmaker sets a “per unit of emissions reduction cost” goal and then translates that into a quantity. This is akin to a regulatory budget approach.
Ambient Air Quality Standards (NAAQS), which describe air quality targets for several major air pollutants, including particulate matter, sulfur dioxide, and nitrogen oxides.26 Once the NAAQS are set, states are charged with developing implementation plans that comprise a set of policies to attain and maintain these air quality targets. In developing their implementation plans, states have several policy options.

In \textit{Whitman v. American Trucking Associations}, the Supreme Court held that EPA could not consider costs when setting the NAAQS.27 Accordingly, the agency focuses its analysis on the benefits of regulation, based on the risks posed to public health and welfare by different concentrations of regulated pollutants.28 Nevertheless, the agency conducts, but does not formally consider in its decision, a cost-benefit analysis every time that it updates the NAAQS.29 States can choose whether to conduct formal cost-effectiveness analyses to develop their implementation plans.30 Nevertheless, the nature of the inquiry left to the states is an exercise in applied cost-effectiveness analysis of a sort.31 That is, once EPA specifies the air quality targets a state must hit, the state then determines the mix of measures it will undertake to hit them. Formal cost-effectiveness analysis can help guide the state toward the least expensive way to meet the target.

\begin{itemize}
 \item 27. \textit{Whitman v. Am. Trucking Ass’ns}, 531 U.S. 457 (2001). More specifically, the Court held that the agency could not use costs as a justification to reduce the stringency of the NAAQS from the health-based standard. For further discussion of the case, see Michael A. Livermore & Richard L. Revesz, \textit{Rethinking Health Based Environmental Standards}, 89 N.Y.U. L. REV. 1184 (2014).
 \item 29. The analysis used to set the NAAQS, the agency does not rely on monetized estimates for benefits and instead bases standards on its “public health policy judgement” informed by the recommendations of the Clean Air Science Advisory Committee. Livermore & Revesz, \textit{supra} note 27, at 1212-14.
 \item 30. \textit{See} Livermore & Revesz, \textit{supra} note 27, at 1239-46 (examining cost-benefit analyses of multiple NAAQS and finding that health-based NAAQS specification usually results in standards higher than those that would align marginal costs and benefits).
 \item 31. The Clean Air Act does not require states to adopt a least cost approach, and EPA cannot consider “economic and technological infeasibility” as part of the approval process for state implementation plans. Union Elec. v. EPA, 427 U.S. 246, 256 (1976).
\end{itemize}
There are a few useful lessons to be drawn from the Clean Air Act example. One is that the law often determines the types of analyses that are appropriate for a regulator. *American Trucking* limits EPA’s ability to consider costs, and so setting the NAAQS based on a full cost-benefit analysis is proscribed. However, under executive orders that have been in place since the Reagan era, agencies are generally required to conduct cost-benefit analyses of major rulemakings. EPA threads this needle by setting the NAAQS based purely on health-based criteria, but then conducting a cost-benefit analysis for information purposes. Because states are given no discretion with respect to the minimum air quality level they must achieve, they have no particular reason to carry out a full cost-benefit analysis. Since their target is set by federal law, a cost-effectiveness analysis is all they need to optimize their policy choices.

A second lesson is that cost-benefit analysis is necessary to detect over- or under-regulation; cost-effectiveness analysis cannot be used for this task. In the case of the NAAQS, the litigants in *American Trucking* likely assumed that, were cost-benefit analysis to be used, it would lead to less stringent regulation, presumably because they believed that the identified marginal benefits would be less than the identified marginal costs. It turns out, however, that EPA’s cost-blind, health-based approach has established standards that are inefficiently weak according to the agency’s own cost-benefit analyses. Looking at benefits in isolation (as EPA does when setting the NAAQS), or costs in isolation (as states do when setting their implementation plans) will never yield sufficient information to evaluate whether a given level of stringency is socially desirable.

A third lesson is that cost-benefit analysis and cost-effectiveness analysis can be used in tandem, especially in real-world decisionmaking contexts when different policymakers are allocated different choices. In the NAAQS case, EPA is charged with setting uniform national standards that apply across the country. Even were it to use cost-benefit analysis when setting the standards, that analysis would be quite aggregated and coarse-grained because the agency would set the correct standard by focusing on average costs and benefits and ignoring local variations that tend to cancel out.

Because NAAQS are uniform across the country, there are different marginal abatement costs in different jurisdictions. When developing their implementation plans, states can attend to local variation in the costs of different

34. A state may wish to carry out a cost-benefit analysis as part of its decision of whether to adopt additional emissions control measures that will lead to cleaner air than is required by the NAAQS. Livermore & Revesz, *supra* note 27, at 1239-46.
35. There is a tradeoff between setting uniform standards, and achieving lowest cost emissions reductions by equalizing marginal abatement costs. When jurisdictions are diverse, uniform standards will result in nonuniform marginal costs. This means that some lower-cost pollution reduction opportunities will not be utilized. But a regime that equalized marginal abatement costs—for equal a tax on emissions—would be unlikely to result in uniform levels of protection.
approaches to achieving emissions reductions. States may also be better positioned to determine which approaches would yield greater indirect or ancillary benefits in addition to achieving regulatory compliance at lower or least cost.37 For these reasons, an additional layer of cost-effectiveness analysis may be in order to help guide state decisionmakers. The national-level cost-benefit analysis carried out by EPA does not render state-level cost-effectiveness analyses redundant.

Cost-benefit analysis and cost-effectiveness analysis can also be used together in cases where not all benefits can be estimated accurately. A cost-benefit analysis approach could be used as much as possible to compare the benefits achieved by regulation to the costs. Where there are important non-quantified benefits, then those costs that are not justified by the quantified benefits can be estimated in terms of the non-quantified benefits. With this kind of analysis in hand, professional judgment can be used to determine whether the rule passes a “breakeven” threshold where the marginal quantified and non-quantified benefits are likely to be greater than the marginal costs.

\textbf{B. Instrument Choice}

A social decisionmaker can take the information in a cost-benefit analysis and use it to evaluate different policy options. Two straightforward types of policies involve setting a quantity of emissions or a price on emissions. Setting the optimal price leads to the optimal quantity and vice versa. A social decisionmaker could also use this information to set a net-benefit maximizing command-and-control style regulation.

Under conditions of perfect information and enforcement, price-based, quantity-based, and command-and-control regulations set according to comprehensive cost-benefit analysis will all lead to the same outcome of maximizing social well-being. In the real world, however, decisionmakers often face conditions of uncertainty, and this fact influences the regulatory instrument that is most likely to maximize net benefits. Generally, economists prefer market-based instruments (i.e., price- or quantity-based approaches) over command-and-control regulation, due in part to the greater information burdens that the latter approach places on regulators.38 A price on pollution or an emissions allowance system allows a regulator to focus on aggregate factors that affect marginal damages and marginal abatement costs across the economy when setting the price or quantity of allowances. Once the price is set or the allowance system is established, individual firms can decide how to change their behavior accordingly. Command-and-control regulation places greater burdens on regulators, who must engage in more detailed and fine-grained rulemakings.

37 States may also be attentive to the distribution of compliance costs.

There is now considerable literature on the relative merits of price-based and quantity-based mechanisms. The origin of this literature is economist Martin Weitzman’s insight that “there is no basic or universal rationale for having a general predisposition toward one control mode or the other.” Rather, Weitzman argues, where abatement costs are uncertain, the suitability of one or the other approach depends on the relative elasticity (i.e., rate of increase) of marginal abatement costs and marginal damages. Although Weitzman’s model abstracted from the complexities of regulatory reality, it yielded insights that have since steered the literature and policymakers alike.

Much subsequent work has extended Weitzman’s initial analysis, highlighting the potential relevance of various factors other than elasticities to how price- or quantity-oriented regulatory instruments will perform. These include risk aversion among regulated firms and dynamic factors such as the potential for policy changes over time. A particularly important line of research explores how hybrid instruments that combine features of both price and quantity mechanisms can yield superior outcomes, given the challenges of adopting policy measures and setting parameters under uncertainty.

From the perspective of a social decisionmaker, one of the most important features of the choice between price-based and quantity-based instruments is the relative allocation of risks over total emissions and market prices. Quantity-based instruments ensure that a given level of emissions reduction is achieved, but create uncertainty over prices. By contrast, price-based instruments create uncertainty over the total amount of emissions reductions that will be achieved but facilitate greater certainty over prices. Hybrid approaches achieve a middle ground allocation of these two uncertainties, and for this reason, have proven attractive to policymakers. Consider the European Union’s Emissions Trading Scheme and the Regional Greenhouse Gas Initiative in the eastern United States, cap-and-trade programs that set regional limits on aggregate emissions and compel qualifying emitters to purchase allowances for each unit of pollution they emit. See, e.g., Torben K. Mideksa & Martin L. Weitzman, Prices Versus Quantities Across Jurisdictions, J. ASS’N ENV’T & RES. ECONOMISTS 883 (2019) (collecting and categorizing selected analytical extensions and noting that “the results generally preserve the earlier insight that, all else held equal, flatter marginal benefits or steeper marginal costs tend to favor prices while steeper marginal benefits or flatter marginal costs tend to favor quantities”).

Pizer and Prest, for instance, focus on uncertainty over time in a dynamic model to argue that a quantity-based regulatory instrument that allows for trading across time periods (e.g., “banking” of allowances) can be an efficient mechanism for firms to hedge against foreseeable policy changes. William A. Pizer & Brian C. Prest, Prices Versus Quantities with Policy Updating, 7 J. ASS’N ENV’T & RES. ECONOMISTS 483, 484 (2020).

emit. Both of these programs revamped their original allowance-oriented designs to include mechanisms that ensure allowance prices and quantities neither drop to zero nor skyrocket suddenly. These mechanisms limit volatility and facilitate business planning while also providing a measure of certainty concerning total emissions levels.

Many jurisdictions are home to a mix of market-based and command-and-control regulatory mechanisms. In such jurisdictions, a cost-effectiveness analysis can borrow a price from a market-based regulatory scheme and use it to assess or recalibrate command-and-control measures that, for instance, address the same pollutant in a different sector. Transposing a price in this way can reveal inefficiencies and opportunities for more aggressive regulation.

II. The Case of Climate

The previous part provided a general overview of cost-benefit analysis and cost-effectiveness analysis, the associated metrics of marginal damages and marginal abatement costs, and how these analyses and metrics can be used to select between alternative regulatory instruments. This following part delves into climate policy more specifically.

A. Marginal Damages of Greenhouse Gas Emissions, a.k.a. the Social Cost of Carbon

The SCC estimates in monetary terms the external cost imposed on society of emitting a marginal metric ton of carbon dioxide into the atmosphere. The

47. It is possible for cost-benefit analysis to be sensitive to the distribution of the allocation of cost and benefits. The technique of equity weighting, for example, places a higher dollar value on costs or benefits when they are experienced by less well-off members of society. See generally Matthew D. Alder, Benefit-Cost Analysis and Distributional Weights: An Overview, 10 REV. ENV’T ECON. & POL’Y 264 (2016). In the context of climate change, equity weights can be incorporated into the construction of the social cost of carbon. NICHOLAS STERN ET AL., THE ECONOMICS OF CLIMATE CHANGE: THE STERN REVIEW 159 (2007); see also GAO, SOCIAL COST OF CARBON: IDENTIFYING A FEDERAL ENTITY TO ADDRESS THE NATIONAL ACADEMIES’ RECOMMENDATIONS COULD STRENGTHEN REGULATORY ANALYSIS, GAO-20-254, at 65 (2020) (“The German Environment Agency developed the national government’s most recent monetary estimates for carbon dioxide emissions using a social cost of carbon approach, which included equity weighting”); Tamma Carleton & Michael Greenstone, Updating the United States Government’s Social Cost of Carbon 31 (Univ. Chicago Energy Pol’y Inst. Working Paper No. 2021-04, 2021) (recognizing that there is “a strong theoretical and empirical case for equity weighting” but not recommending it unless Circular A-4 is amended to permit it). The U.S.
SCC is the main output of Integrated Assessment Models (IAMS), which seek to capture relevant features of the global climate and economy. Academic researchers developed the first IAMS in the early 1990s to estimate global damages resulting from climate change. These models and estimates have since been subjected to repeated rounds of peer review and updating. National governments, starting with the UK, began making formal use of those estimates in the early 2000s.

Federal agencies in the United States first used the SCC in cost-benefit analyses conducted to assess regulations following a 2008 decision by the U.S. Court of Appeals for the Ninth Circuit. In that decision, the court remanded a rulemaking to the National Highway Transportation Safety Administration, which had acknowledged that its fuel economy rule would reduce carbon dioxide emissions but had failed to tally the benefits of those reductions so that they could be compared to the regulation’s costs.

In 2009, the Obama Administration convened an Interagency Working Group on the Social Cost of Carbon to

NHTSA only considered greenhouse gas emissions implications of its rule because of the Supreme Court’s decision in Massachusetts v. EPA, 549 U.S. 497 (2007), which had rejected EPA’s justification for refusing to regulate greenhouse gas emissions as “pollutants” under Section 202 of the Clean Air Act.

53. Ctr. for Biological Diversity, 538 F.3d at 1198 (“NHTSA fails to include in its analysis the benefit of carbon emissions reduction in either quantitative or qualitative form.”).
establish a monetized value of emissions for use across federal agencies. The estimates it published in 2010—an instantiation of the SCC referred to here as the IWG SCC—drew on the three most widely cited IAMs. The Group published revised estimates in 2013 based on updated versions of those models, and in 2016 added estimates of the social cost of methane (SC-CH4) and nitrous oxide (SC-N2O).

In January 2017, the National Academies of Sciences, Engineering, and Medicine published an examination of the IWG SCC as well as recommendations for how to update it to incorporate the findings of ongoing research. Then, in March 2017, President Trump’s Executive Order 13,783 disbanded the Interagency Working Group and instructed agencies to monetize the effects of changes in greenhouse gas emissions in a way that would yield far lower values.

President Biden’s Administration then reversed this reversal with Executive Order 13,990 in January 2021. That order re-established the IWG and directed it to undertake several tasks, including: first, conduct an initial review of the Trump Administration’s approach to the SCC and recommend an interim value for use by federal agencies by February 2021; and second, by early 2022, develop both “final” values for carbon, methane, and nitrous oxide, and, in line with the National Academies’ recommendations, a process for regular review and updating of those values with due consideration for potentially catastrophic climate risks, environmental justice, and intergenerational equity.

The recommended interim valuation issued in February 2021 restored the estimates adopted in 2016, adjusted for inflation: $51 per metric ton of carbon dioxide, $1,500 per ton of methane, and $18,000 per ton of nitrous oxide. Recent research into climate damages and discount rates, among other things, suggests

55. Id. at 5-8.
58. National Academies of Sciences, Engineering, and Medicine, supra note 6.
61. Id.
that the value recommended in 2022 will reflect adjustments that yield higher estimates of the SCC and other greenhouse gases.63

All applications of the IWG SCC by federal agencies involve monetizing the anticipated change in greenhouse gas emissions resulting from agency decisions or projects. In addition to conducting the cost-benefit analyses required by executive orders and laws like the Energy Policy and Conservation Act,64 agencies have also applied the IWG SCC when assessing environmental impacts pursuant to the National Environmental Policy Act (NEPA),65 and to make procurement decisions and award grants.66 These applications—especially those under NEPA—have been the subject of frequent litigation,67 and courts have both upheld agencies’ use of the IWG SCC68 and, in some contexts, have directed agencies to use it.69

Several state governments have applied the IWG SCC to decisions or analyses.70 In addition, New York adopted guidance in 2020 for its state agencies, recommending that they use a version of the IWG SCC that employs a lower discount rate for its central value (2%) than what the IWG SCC recommends (3%), which yields a higher estimate of value of carbon emissions.71

63. See Peter H. Howard & Jason Schwartz, Valuing the Future: Legal and Economic Considerations for Updating Discount Rates, 39 YALE J. ON REGUL. 595 (2022); Peter Harrison Howard & Derek Sylvan, Wisdom of the Experts: Using Survey Responses to Address Positive and Normative Uncertainties in Climate-Economic Models, 162 CLIMATIC CHANGE 213 (2020) (revealing a disparity between IAMs and the broader community of climate economists’ research into key features of climate models and emissions valuation); see also N.Y. STATE DEP’T OF ENV’T CONSERVATION, ESTABLISHING A VALUE OF CARBON: GUIDELINES FOR USE BY STATE AGENCIES 4 (2020) (recommending that agencies apply a central value of $121/ton for CO2, $2,700/ton for CH4, and $42,000/ton for N2O).

66. For example, in negotiating parcel shipping contracts. See 2021 TSD, supra note 62, at 12 n.12.

68. Zero Zone, 832 F.3d at 677-80.

69. See, e.g., Vecinos para el Bienestar de la Comunidad Costera v. FERC, 6 F.4th 1321 (D.C. Cir. 2021) ("On remand, the Commission must explain whether 40 C.F.R. § 1502.21(e) calls for it to apply the social cost of carbon protocol or some other analytical framework, as ‘generally accepted in the scientific community’ within the meaning of the regulation, and if not, why not."). Courts have also rejected arguments that agencies must apply the SCC. See, e.g., EarthReports, Inc. v. FERC, 828 F.3d 949, 956 (D.C. Cir. 2016); Citizens for a Healthy Cnty. v. Bureau of Land Mgmt., 377 F. Supp. 3d 1223, 1239-41 (D. Colo. 2019); WildEarth Guardians v. Zinke, 368 F. Supp. 3d 41, 77-79 (D.D.C. 2019).

70. See DENISE A. GRAB, ILIANA PAUL & KATE FRITZ, INST. FOR POLICY INTEGRITY, OPPORTUNITIES FOR VALUING CLIMATE IMPACTS IN U.S. STATE ELECTRICITY POLICY 16 (2019).

71. NEW YORK STATE DEP’T OF ENV’T CONSERVATION, supra note 63, at 18. Notably, that guidance was updated in 2021 to ensure methodological consistency with IWG SCC. Id. at 2.
B. The Marginal Abatement Cost “Alternative”

Two recent papers criticize the SCC and argue for its displacement. One, Kaufman et al.’s A Near-Term to Net-Zero Alternative to the Social Cost of Carbon, argues that the SCC embodies too much uncertainty to help set federal policy and proposes employing a target-based alternative instead.72 This proposed alternative is meant to yield a carbon price to inform specification of a carbon tax through a repeating three-step process.

- First, set a date for the relevant jurisdiction to reach net-zero emissions; the authors assign this task, which involves “balanc[ing] a range of factors,” to “governing officials.”73
- Second, specify “an emissions pathway” to that target date, meaning the rate (if linear) or rates (if curvilinear) at which policies and technologies will abate emissions up to the target date.74
- Third, estimate an emissions price based on the marginal cost of emissions abatement for the “near-term (the next decade, for example)” on the pathway to net-zero.75

Thus, while this approach fully specifies the rate of emissions abatement for each year leading up to the net-zero target, it only specifies the cost of achieving that abatement for the first few of those years. As noted above, the authors call for all three steps to be repeated “periodically” to ensure that its outputs reflect up-to-date inputs—ranging from political objectives to policies’ success at abating emissions, to technological changes.76 The authors’ approach assumes a decision on the part of Congress or federal agencies to establish not only a net-zero target but to possibly also revisit and reestablish it periodically.

Like Kaufman et al., the second paper, The Economics of Immense Risk, Urgent Action and Radical Change: Towards New Approaches to the Economics of Climate Change, by Nicholas Stern et al., criticizes the SCC and IAMs on which it relies and proposes a target-consistent alternative. The difference between the SCC and their approach, they explain, “is analogous to that between cost-benefit and cost-effectiveness analysis.”77 Their proposed approach “cannot help us answer the question of what our target should be; it simply helps us to understand the best ‘glidepath.’”78 And so, like Kaufman et al., Stern et al.’s proposal also assumes an emissions-reduction target. As they put it, through the

72. Noah Kaufman et al., A Near-Term to Net-Zero Alternative to the Social Cost of Carbon for Setting Carbon Prices, 10 NATURE CLIMATE CHANGE 1010 (2020).
73. Id. at 1011.
74. Id.
75. Id.
76. Id.
77. Nicholas Stern et al., The Economics of Immense Risk, Urgent Action and Radical Change: Towards New Approaches to the Economics of Climate Change, J. ECON. METHODOLOGY, Feb. 2022, at 1, 12.
78. Id.
Paris Agreement,79 which embodies a 1.5°C or well below-2°C temperature target, “[t]he international community has reached a broad consensus,”80 and the analytical task for economic analysis “is to find the best way of achieving that goal.”81 Against this backdrop, Stern et al. set out a research agenda aimed at developing “a range of models and analytical approaches” that all assume both a 2°C temperature constraint and the insufficiency of “markets on their own [to] manage the necessary transformations efficiently.”82 One of the questions to which they seek answers is, “If we use prices as guidance, what is the cost of carbon?”83

The proposals in both Kaufman et al. and Stern et al. have been informed by experience with a target-based approach in the United Kingdom. In 2008, Britain’s Climate Change Act established a schedule of binding “carbon budgets” that proceed toward a 2050 emissions reduction target in five-year increments.84 In 2009, Britain switched from the SCC to a MAC-based approach to valuing emissions.85 The resulting analysis yielded three sets of overarching values that, stitched together, serve as a shadow price for emissions from 2008 to 2050: a short term set of prices for 2008-2020, a long term set for 2030-2050, and a transitional set to bridge the decade between. The short-term price is a hybrid of two prices, one for economic sectors subject to the European Union’s Emissions Trading Scheme86 and the other for “non-traded” sectors in which no

79. The 2015 Paris Agreement was adopted at the 21st Conference of the Parties to the United Nations’ Framework Convention on Climate Change. That agreement’s basic goal is to “[h]old[] the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change.” Paris Agreement to the United Nations Framework Convention on Climate Change art. 2, Dec. 12, 2015, T.I.A.S. No. 16104. President Trump withdrew the United States from the Paris Agreement, effective November 2021. President Biden rejoined the agreement in January 2022.

80. Stern et al., supra note 77, at 1, 11.

81. Id. at 12.

82. Id. at 26.

84. The 2008 Act directs the Climate Change Committee to recommend a five-year budget to Parliament, which can then codify that recommendation or seek revisions. Climate Change Act 2008, c. 27 (UK). In 2019, Parliament updated the original target of 80% reduction from 1990 levels to 100%. Climate Change Act 2008 (2050 Target Amendment) Order 2019/1056 (UK). Those budgets comprise sectoral targets, including for surface transportation, buildings, and electricity. See, e.g., CLIMATE CHANGE COMMITTEE, SIXTH CARBON BUDGET (2020) (discussing policies for each of 11 sectors).

85. UK DEP’T OF ENERGY & CLIMATE CHANGE, CARBON VALUATION IN UK POLICY APPRAISAL: A REVISED APPROACH 2 (2009). This decision aimed to inform and support implementation of policies adopted pursuant to the emissions reduction targets established by the 2008 Act. Id. at 24-26.

market price was assigned to emissions. The analysis underlying the long-term price assumes that, by 2030, there will be a binding global emissions reduction target and all significant emissions sources will operate subject to some form of cap or price.

Policymakers use these prices to help assess options in various regulatory contexts. Instructions for doing so are prescribed by the UK Treasury’s Green Book and the supplement, *Valuation of Energy Use and Greenhouse Gas*. Those instructions include a directive to assess cost-effectiveness by calculating “the average cost of saving each tonne of carbon dioxide (equivalent).” This information can be used by policymakers to sort lower from higher-cost options or to select all non-duplicative options under a cost-effectiveness threshold.

In contrast to the SCC, which reflects an emissions value based on global climate damages and abatement costs, any MAC-based threshold and related MAC curve are necessarily specific to a given jurisdiction, and possibly also specific to a sector within that jurisdiction. This has several implications, including that the MAC-based threshold derived from an analysis of one jurisdiction is likely to differ from that of another jurisdiction, in effect meaning that those jurisdictions assign different values to emissions. Because the same holds for economic sectors within a given jurisdiction, policymakers who rely on MAC-based thresholds for policy decisions can potentially assign different values to emissions just because they were emitted from a vehicle instead of a power plant or cement production facility. Economists generally prefer pricing that is not confined to one jurisdiction or sector, but spans as much of the global economy as possible—economic principle holds that a global emissions price would be ideal. But generic greenhouse gas emissions pricing appears to be politically impossible at present, not just globally but within the U.S. and each of its states and territories. And so, the relative cost-effectiveness of abatement opportunities in U.S. jurisdictions generally does not determine their uptake.

87. CARBON VALUATION IN UK POLICY APPRAISAL, supra note 85, at 28 (“This framework means that both the traded and non-traded sectors would be brought into line, in terms of the basis of assessment—both would be based on the necessary abatement costs required to meet targets.”).

88. The Department of Environment and Climate Change explained this shift from domestic to global scope as follows: “In the longer term, it is not appropriate to look at a UK-specific perspective alone. Climate change is a global problem that will require a global response. The long-term vision is of a world operating under a binding emissions cap, with that cap set with the objective of reaching a globally-agreed stabilization scenario.” Id. at 32.

89. HM TREASURY, VALUATION OF ENERGY USE AND GREENHOUSE GAS: SUPPLEMENTARY GUIDANCE TO THE HM TREASURY GREEN BOOK ON APPRAISAL AND EVALUATION IN CENTRAL GOVERNMENT 6 (2019) (indicating that steps for quantification and valuing of energy and greenhouse gas emissions should be applied at the policy, program, and project levels).

90. HM TREASURY, THE GREEN BOOK 83-84 (2019); HM TREASURY, GREENHOUSE GAS: SUPPLEMENTARY, supra note 89, at 16 Box 3.7 (presenting example of calculation of monetized emissions benefits in both traded and non-traded sectors resulting from energy efficiency program).

91. HM TREASURY, GREENHOUSE GAS: SUPPLEMENTARY, supra note 89, at 26 para. 5.4, Box 5.1.
C. Recapitulating an Old Debate

The debate over whether to look to the SCC or a MAC-based threshold for a superior estimate of the value of carbon is, fundamentally, a debate over whether to apply cost-benefit or cost-effectiveness analysis to the task of carbon valuation. This debate over how to value carbon also bears notable resemblance to the prices versus quantities debate described in Part I. In this Section, we describe these parallels before identifying several ways for the two carbon valuation tools to serve complementary rather than competing functions.

Cost-benefit analysis aims to maximize net social benefits by identifying where marginal costs come to equal marginal benefits, and the SCC allows one to identify where the marginal benefit of avoiding climate damage equals the marginal cost of doing so. Assigning the price where those marginal values equal one another to each unit of greenhouse gas emissions could, in theory, steer society toward a stable climate. As for cost-effectiveness analysis, it ignores benefits and takes an objective as given rather than revealing which objective to pursue. A MAC-based threshold, similarly, ignores the benefits of avoiding climate damages and relies on an extrinsically specified emissions reduction target.\(^92\)

Since the SCC and a MAC-based threshold are specific applications of cost-benefit and cost-effectiveness analysis to the climate context, the three lessons discussed above are applicable: First, the law often determines which emissions valuation tool regulators must use; second, a threshold derived from analysis of a MAC cannot detect over- or under-regulation in the way that the SCC can; and third, the SCC and MAC-based threshold can be complementary.

Like the prices versus quantities debate, a key point of focus in the debate over carbon valuation instruments is relative uncertainties. In the older debate, Weitzman distilled the question down to the relative elasticities of marginal damages and abatement costs under increasing regulatory stringency.\(^93\) In the climate context, key uncertainties include climate sensitivity to emissions (including tipping points)\(^94\) and the potential for catastrophic damages on the one hand, and how quickly and well economies can adapt and develop new technologies on the other.\(^95\)

A fully-fledged cost-benefit analysis of climate policies requires the collation and analysis of information about global climate and economic damages on the one hand, and global emissions-avoiding policies and

\(^92\) The process of setting a target presumably involved some assessment of benefits.

\(^93\) Weitzman, supra note 39.

\(^94\) Simon Dietz et al., Economic Impacts of Tipping Points in the Climate System, 118 PROC. NAT’L ACAD. SCI. E2103081118, at *1 (2021); Carleton & Greenstone, supra note 47, at 20.

\(^95\) For a fairly comprehensive description of the uncertainties embodied in each carbon valuation tool, see Lina Isacs et al., Choosing a Monetary Value of Greenhouse Gases in Assessment Tools: A Comprehensive Review, 127 J. CLEANER Prod. 37 (2016). Memorably, Isacs et al. observe that: “the uncertainties around [the social cost of carbon] estimations are immense,” but “[l]ike for [the social cost of carbon], many of the factors determining a MAC value are highly uncertain.” Id. at 40–42.
technologies—a MAC curve or something like it—on the other. Proponents of
MAC-based threshold for emissions valuation often highlight the uncertainties
and gaps in the damages-portion of this analysis," and argue for dispensing with
it. Rather than attempt to derive a damages curve, they say, better to determine
an emissions reduction target in some other way and deal just with the analysis
needed to specify a MAC curve.

But MAC curves do not avoid uncertainties and are also not strictly
necessary to value emissions using the SCC. MAC curves seek to estimate rates
and costs of developing and deploying new technologies, patterns of
technological change and adoption are notoriously hard to model accurately. As for their necessity: the IWG SCC, for one, does not use a MAC curve to
estimate costs. Instead, it relies on a policy baseline and assumes that no policy
or technology it is used to evaluate will shift the cost curve one way or the
other. SCC and MAC-based analysis are often presented as substitutes, but,
like cost-benefit and cost-effectiveness analysis, they can sometimes be used in
complementary ways. And, much as the prices versus quantities debate found at
least partial resolution in the development of hybrid instruments, the debate over
emissions valuation tools can find partial resolution through complementary
applications of these emissions-valuation tools.

As discussed in Part I, under an economically efficient policy regime, the
SCC and global MAC-based threshold will be the same. If these two estimates
are not equal, then either the estimates are inaccurate in some way, or the policy
regime is not efficient. For this reason, comparing the SCC to a MAC-based
threshold can “stress test” both the figures themselves, and the policy regime
under analysis. If the numbers do not align, analysts might pursue several
potential avenues.

If the MAC-based threshold is higher than the SCC, possible explanations
include the following:

The SCC is too low. Concerns about whether the current SCC is
inaccurately low may have motivated the approaches forwarded in Kaufman et al.
and Stern et al. These concerns should be addressed in the process

96. Pezzey, supra note 3, at *4 (2019) (“Many writers, including leading IAM authors, have
noted the many types of damage, like biodiversity loss and ocean acidification, and the danger of triggering
irreversible ‘tipping elements’ in the climate system that are omitted from or understated in such IAMs’
damage functions.”) (internal citations omitted); Howard, supra note 48, at 659, 672-76 (discussing
included and excluded damages and the challenges of incorporating some types of damage); see also R.
Daniel Bressler, The Mortality Cost of Carbon, 12 NATURE COMM’NS 4467 (2021) (“One source of
climate damages not updated to the latest scientific understanding in IAMs is the effect of climate change
on human mortality.”).

97. Richard A. Rosen & Edeltraud Guenther, The Economics of Mitigating Climate Change:
What Can We Know?, 91 TECH. FORECASTING & SOC. CHANGE 93, 95 (2015) (“...none of the previous
damage functions incorporated into IAMs seem to have much basis in fact.”).

98. Isacs et al., supra note 95, at 42; see also Fabian Kesicki & Paul Ekins, Marginal Abatement

100. Id.

101. Kaufman et al., supra note 72; Stern et al., supra note 77.
underway in the Biden Administration to update the SCC based on the latest research findings and recommendations of, among others, the National Academies of Sciences. More generally, if confidence in a particular emissions reduction target and the MAC-based threshold oriented to that target is higher than confidence in the SCC, a discrepancy would indicate that the SCC underestimates the true damages associated with climate change.

The target that orients the MAC is too ambitious. Emissions reduction targets are generally the result of a political process that distills a deadline from a mix of scientific, economic, and political information. A variety of situations might lead a given jurisdiction to adopt an overly ambitious target. For example, climate impacts there may be especially salient, leading to strong political outcry, or there may be powerful interest groups in the jurisdiction that will benefit from decarbonization policies.

The MAC-based estimate is too high. Even if the target that orients the MAC analysis aligns with the SCC’s emissions reduction pathway, the MAC-based estimate of emissions’ value might still be off. This could owe to analytical error, due to the failure to predict technological changes that will lower abatement costs. Or, a jurisdiction may not adopt the lowest cost tools to reduce emissions, leading to a MAC that is inefficiently high.

The target has been selected to achieve distributional goals. Climate damages will not be borne equitably, either within or across countries. Generally speaking, poorer populations will almost certainly suffer more. At the same time, relatively well-off groups have contributed a larger share to the current stock of greenhouse gases in the atmosphere. Recognizing this, a comparatively wealthy and high-emitting country might pursue a form of climate justice by selecting an earlier emissions abatement target than would be consistent with the SCC. Using the terminology of the Paris Agreement, this would be a way for that country to carry out its share of signatories’ “common but differentiated responsibilities” consistent with its capacity and perhaps also its historical contribution to climate change. Such a decision would effectuate a wealth transfer to poorer populations and would do so without the transaction costs and potential for corruption that can encumber more direct efforts at international wealth redistribution.

If the MAC-based estimate is lower than the SCC, possible explanations include the following:

The SCC is too high. There are many critics of the SCC, but few of those who doubt the accuracy of its estimate of emissions’ value have made persuasive

103. Jurisdictions may bring other normative frameworks to bear other than economic efficiency. For example, a jurisdiction might decide to entirely decarbonize based on a view that any contribution whatsoever to global climate change is morally impermissible.

104. See Paris Agreement, supra note 79, at pmbl. & arts. 2, 4.
arguments that the value is too high. In fact, there is fairly wide agreement, including by the IWG itself, that the IWG’s current estimates are almost certainly significant underestimates. Nonetheless, one or more technical mistakes could, in principle, result in an overestimate of the value estimated by the SCC. A re-examination might review one or more of the tool’s four modules (emissions and economic growth trajectories, climate sensitivity, damages, and discounting) or consider its treatment of uncertainty or equity.

The emissions reduction target orienting the MAC is deliberately set to lag what would be consistent with the SCC. As noted above, emissions-reduction targets are generally the result of a political process conducted within a particular jurisdiction. Numerous reasons might therefore be behind an emissions reduction target set below what corresponds to an SCC-consistent pathway. A jurisdiction may simply lack the political will to make the necessary investments to achieve an efficient level of emissions reductions. This may be due to free-rider problems, a relatively low level of exposure to climate risks, or a relatively high carbon-reduction burden. The obverse of the “climate justice” decision taken by a wealthy country, described above, may also be relevant. That is, a country that has historically had very low rates of emissions per capita might adopt a relatively late emissions reduction target and explain that decision in terms of the climate justice it believes it is due.

The MAC-based estimate is too low. Assuming the target that orients the MAC-based estimate is consistent with the SCC emissions pathway, then a low emissions valuation might owe to an analytical error that underestimates the cost of achieving the requisite emissions reductions—perhaps due to overly optimistic assumptions concerning technological development.

III. Climate Policy in Legal Context

In practice, the law often determines which carbon valuation tool is most appropriate to inform or justify regulators’ decisions about climate policy design and implementation. This Part first describes two basic ways in which the law might do this. It then describes more concretely how government agencies at the federal and state levels in the United States currently apply the SCC. Finally, building on those descriptions, it presents several stylized examples to illustrate different limits to the SCC’s utility and so caution against some forms of misapplication.

105. Revesz & Sarinsky, supra note 6; see also California v. Bernhardt, 472 F. Supp. 3d 573, 611 (N.D. Cal. 2020) (rejecting the Trump administration’s $1 estimate of the social cost of carbon and explaining that the executive order prompting that estimate “did not and could not erase the scientific and economic facts that formed the basis for [the IWG’s earlier] estimate.”).

106. 2021 TSD, supra note 62, at 4 (“[T]he range of four interim SC-GHG estimates presented in this TSD likely underestimate societal damages from GHG emissions.”).

107. The National Academies 2017 report, Valuing Climate Damages, discusses each of these elements and their interactions. NATIONAL ACADEMIES OF SCIENCES, ENGINEERING, AND MEDICINE, supra note 58. See also Carleton & Greenstone, supra note 47, at 6-7 (listing four modules and three “cross-cutting modeling decisions”).
A. The Overarching Legal Context

Two ways in which the law might steer regulators to use either the SCC or a MAC-based value for greenhouse gas emissions are, first, through the adoption of an economy-wide emissions reduction target; or, second, through requirements that apply generically to regulatory decisions, including those that carry out climate policies.

1. Jurisdictions That Have Adopted Emissions Reduction Targets

In principle, a jurisdiction that adopts a legally binding emissions target to steer climate policy has only limited use for either climate-oriented cost-benefit analysis or the SCC. The basic analytical question for a regulator charged with developing programs to hit that target, or for courts reviewing that regulator’s decisions, is not whether those decisions’ societal benefits justify their costs, but whether those decisions are less costly than alternatives. A challenge to an agency’s proffered justification for imposing meaningful costs on stakeholders might fault the agency for failing to adequately explain its rejection of one or another less costly alternative. But it generally could not be faulted for choosing an approach that is net costly (as opposed to net beneficial) to society, so long as that approach is more cost-effective than alternatives.

That said, a legally binding target could be paired with a broader regulatory mandate, such that the target amounts to a floor, with a regulator free to depart in the direction of greater stringency when it is justified in doing so. Colorado anticipated this sort of possibility by pairing its emissions reduction target with a directive to agencies to be more ambitious if doing so would be “in the public interest.” Under this legal regime, regulators would use the higher of a MAC-based threshold (which ensures consistency with the target) and the SCC (which checks in additional emissions reductions would be cost-benefit justified).

2. Generic Rules of Regulatory Decisionmaking

The administrative requirements that govern regulatory decisions often include prescribed forms of regulatory impact assessment. Use of either the SCC or a MAC-based threshold depends at least in part on compatibility with what administrative law requires of agencies. As discussed above, in the United States, longstanding executive orders generally require cost-benefit analysis. In the United Kingdom, by contrast, some decisions are to be justified using cost-

108. Joseph E. Aldy, Giles Atkinson & Matthew J. Kotchen, Environmental Benefit-Cost Analysis: A Comparative Analysis Between the United States and the United Kingdom, 13 ANN. REV. RES. ECON. 267 (2021) (describing the United Kingdom’s use of emissions reduction targets as resulting in “a role for economic analysis that is more about implementation than about setting the overall direction”).
109. COLO. REV. STAT. § 40-2-125.5(3)(a)(II) (directing utilities to generate electricity using only clean resources by 2050 “or sooner if practicable” if it is economically feasible and in the public interest to do so); id. at (4)(d) (identifying factors indicative of what is in the public interest).
benefit analysis.110 Other decisions—such as those related to greenhouse gas emissions—are justified with cost-effectiveness analysis.111 Other jurisdictions, including most states in the United States, require fully articulated and supported reasons for a decision but do not necessarily always prescribe a particular mode of regulatory analysis.112

In the United States, Executive Orders 12,866 and 13,563 direct federal agencies to use cost-benefit analysis when justifying adoption of significant rules.113 The Office of Management and Budget has elaborated on and clarified that directive with Circular A-4.114 This directive to justify decisions in terms of net social benefits is not, on its own, legally enforceable, but it interacts with the Administrative Procedure Act. Under that Act, agencies have discretion over how to regulate within the confines of whatever statute empowers them to do so but they must provide a reasoned explanation of their policy decisions.115 While courts reviewing an agency decision do not prescribe a particular rationale for arriving at and defending it, they do examine the quality and rationality of the agency’s proffered justification.116 So, when an agency justifies its decision using cost-benefit analysis, a reviewing court will insist that the analysis be complete and evenhanded.117 Agency decisions whose effects include increases or reductions in greenhouse gas emissions are therefore harder to justify if those emissions are ignored or are not valued in a way that enables—as the SCC does—comparison to other effects.

\begin{footnotesize}
\begin{enumerate}
\item[111.] Aldy, Atkinson & Kotchen, \textit{supra} note 108, at 276.
\item[112.] JASON A. SCHWARTZ, INST. FOR POL’Y INTEGRITY, 52 EXPERIMENTS WITH REGULATORY REVIEW: THE POLITICAL AND ECONOMIC INPUTS INTO STATE RULEMAKING 80-81 (2010).
\item[114.] CIRCULAR A-4, \textit{supra} note 15.
\item[115.] 5 U.S.C. § 553(e) (2018); Scenic Hudson Pres. Conf. v. Fed. Power Comm’n, 453 F.2d 463, 468 (2d Cir. 1971) (“Where the Commission has considered all relevant factors, and where the challenged findings, based on such full consideration, are supported by substantial evidence, we will not allow our personal views as to the desirability of the result reached by the Commission to influence us in our decision.”).
\item[116.] Dep’t of Homeland Sec. v. Regents of the Univ. of Cal., 140 S. Ct. 1891, 1907 (2020) (“It is a ‘foundational principle of administrative law’ that judicial review of agency action is based on “the grounds that the agency invoked when it took the action.” (quoting Michigan v. EPA, 576 U.S. 743, 758 (2015))); see also SEC v. Chenery Corp., 318 U.S. 80, 88 (1943); Carolyn Cecot & W. Kip Viscusi, \textit{Judicial Review of Agency Benefit-Cost Analysis}, 22 GEO. MASON L. REV. 575 (2015).
\item[117.] See, e.g., Mozilla Corp. v. Fed. Commc’ns Comm’n, 940 F.3d 1, 70-71 (D.C. Cir. 2019) (discussing the consistency of the FCC’s approach with instructions in Circular A-4); Cooling Water Intake Structure Coal. v. EPA, 905 F.3d 49, 67 (2d Cir. 2018) (“[A]gencies are ordinarily required to consider the relative costs and benefits of a regulation as part of reasoned decisionmaking.”); Nat’l Ass’n of Home Builders v. EPA, 682 F.3d 1032, 1040 (D.C. Cir. 2012) (“[W]hen an agency decides to rely on a cost-benefit analysis as part of its rulemaking, a serious flaw undermining that analysis can render the rule unreasonable.”); City of Portland v. EPA, 507 F.3d 706, 713 (D.C. Cir. 2007) (“[W]e will [not] tolerate rules based on arbitrary and capricious cost-benefit analyses.”).
\end{enumerate}
\end{footnotesize}
B. Current Applications of the SCC by Federal and State Agencies

Government agencies at the federal and state levels use the SCC when assessing decisions that will reduce or increase emissions of carbon dioxide and other greenhouse gases. Federal applications tend to be more uniform than state-level applications.

Federal agencies generally apply the SCC in three instances: cost-benefit analysis; review of environmental impacts pursuant to NEPA; and procurement and grantmaking decisions.

The first of these is the use of the SCC in regulatory cost-benefit analysis. The Interagency Working Group’s SCC was developed specifically for use in cost-benefit analysis, and applies to analyses conducted pursuant to executive order or to statutes that direct an agency to specify a given regulatory standard. The latter sort of application was examined in *Zero Zone*, in which the Seventh Circuit rejected an industry challenge to the Department of Energy’s updated energy efficiency standard for commercial refrigerators, adopted pursuant to the Energy Conservation Policy Act. That act calls for such standards to achieve maximal energy efficiency within the bounds of what the agency determines to be “technologically feasible and economically justified.” The agency used the SCC to estimate the standard’s benefits in order to inform its interpretation of “economically justified,” a decision that the court upheld as reasonable.

The second type of application, environmental review of agency decisions, has been more contentious and less frequent to date. Operationally, this application looks just like the monetization of benefits (or costs) that informs a cost-benefit analysis, but instead of the resulting monetary value always being netted against others, it often merely features in the list of impacts attributable to

122. See Palenik, supra note 67, at 405-10 (tracing line of recent cases).
a given decision or project. Notably, some agencies’ applications of the SCC to environmental review more closely resemble cost-benefit analysis—the U.S. Postal Service, for instance, recently used the SCC to inform its comparison of program options in a draft environmental impact assessment.

The third type of application involves including the SCC among other factors that inform decisions about what to procure or to whom funding should be granted. Governments can apply the SCC to the procurement of a wide range of assets, including vehicle fleets, energy, and even the cement and steel used in infrastructure and buildings. Although the analyses of each of these differ in their particulars, in all cases they involve estimating the lifecycle emissions profiles of different procurement options and using the SCC to translate avoided emissions into a value comparable to other types of cost savings. Grant awards, similarly, can require applicants to include analyses of emissions impacts (or avoidance) of their proposals so that the awarding agency can weigh that aspect of the program or project against others in comparable terms.

State agencies have, to date, mainly used the SCC to inform decisions about planning and compensation in the power sector. One such application involves the development and review of integrated resource plans, which spell out how an electric utility will develop and operate its assets. In states that require utilities to consider greenhouse gas emissions impacts when choosing among alternative resource plans, utilities are often directed to apply the SCC to help weigh the costs and benefits of their proposals. Notably, this application is less uniform than cost-benefit analysis by federal agencies and the variations across states are meaningful.

Other notable power-sector applications of the SCC relate to

124. United States Postal Service, Draft Environmental Impact Statement: Next Generation Delivery Vehicle Acquisitions 4-19 to 4-28 (2021); see also BOEM, Cook Inlet Planning Area Oil and Gas Lease Sale 244 in the Cook Inlet, Alaska Final Environmental Impact Statement 4-190 to 4-191 (2016) (estimating the social cost of emissions resulting from proposed offshore oil and gas lease sales).

126. For a compilation of states’ uses of the social cost of carbon, see States Using the SCC, Inst. for Pol’y Integrity, https://costofcarbon.org/states [https://perma.cc/SJ7N-ETPE].

128. See, e.g., Grab, Paul & Fritz, supra note 70, at 17-18 (Colorado); id. at 20 (Minnesota).

compensation paid to non-emitting generation resources. Programs in Illinois, New Jersey, and New York require retail utilities to pay nuclear facilities for Zero Emissions Credits, the value of which derives in part from the SCC.130 And in New York, the Public Service Commission uses the SCC to inform compensation paid to distributed energy resources.131

\textbf{C. Potential Applications of Carbon Valuation Metrics}

This final Section draws on several scenarios to illustrate the role of SCC and/or a MAC-based emissions values in climate policymaking. Those scenarios involve several dimensions, including the presence (or absence) of a binding emissions target, implementation by a federal or state agency, and application to various sectors. These illustrative scenarios serve to confirm two features of climate policy: first, the interaction of binding emissions targets with the analytic enterprise; and second, the potentially complementary role of a MAC-based threshold and the SCC, depending on the legal context.

With respect to the adoption of emissions reduction targets, there are at least four types of jurisdictions, listed in the following table:

Table 1: Jurisdictional Typology for Choosing a Carbon Valuation Metric

<table>
<thead>
<tr>
<th>Type of Jurisdiction</th>
<th>Example</th>
<th>SCC or MAC-Based Value?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) No binding, economy-wide emissions reduction target</td>
<td>Arkansas</td>
<td>SCC is appropriate for most applications</td>
</tr>
<tr>
<td>(b) Clear and binding target</td>
<td>Washington State</td>
<td>MAC is appropriate for most applications</td>
</tr>
<tr>
<td>(c) Clear and binding target plus authorization to agencies to pursue more aggressive policies where warranted</td>
<td>Colorado</td>
<td>First apply a MAC-based threshold, then apply the SCC for comparison and to determine if greater ambition is warranted</td>
</tr>
<tr>
<td>(d) Hazy or potentially binding target</td>
<td>Maryland</td>
<td>Both are potentially appropriate</td>
</tr>
</tbody>
</table>

In the first two types of jurisdiction, the SCC and a MAC-based threshold are, respectively, the appropriate choices for agencies to employ to value greenhouse emissions in most, if not all, applications. In jurisdiction (a) the lack of a binding target means that no tool can provide a better answer than the SCC to the question, How worthwhile is it to abate a marginal unit of emissions? In jurisdiction (b) the answer to that question should derive from a MAC-based threshold, which is, in turn, grounded in the jurisdiction’s emissions reduction target. In jurisdiction (c), the question is best answered in two steps: the first would involve applying a MAC-based threshold value, and the second would involve a sensitivity analysis that applies the SCC to assess whether greater ambition is warranted. Finally, in jurisdiction (d), where the target is either unclear, not firmly binding, or both, then there could potentially be a role for both a MAC-based threshold and the SCC. Practically speaking, some jurisdictions may straddle at least two of these categories rather than sitting well within the confines of just one.

The examples of climate policy measures below further illuminate the role of the SCC or a MAC-based threshold in a given jurisdiction’s approach to policy formulation and implementation.

Royalty surcharges for leases to extract fossil fuels from federal lands. Pursuant to statutory directive, the Department of the Interior collects royalties for all fossil fuels extracted from federal lands.132 Interior’s decisions about royalties rest on the Mineral Leasing Act of 1920 and the Federal Land Policy

and Management Act., and it operates under the broad directives of Executive Order 12,866 and similar guidelines. Accordingly, Interior should account for the full range of externalities associated with the activities that it licenses.133 In the context of climate change, Interior should ensure that royalties reflect the cost of climate damage imposed by the consumption of fossil fuels.134 Because the federal government lacks a binding emissions target, the SCC (rather than some MAC-based threshold) should be used to internalized climate-related harms into the royalty structure.

Valuing emissions avoided by energy efficiency investments. Dozens of states require retail energy utilities to sponsor energy efficiency programs.135 As of this writing, Congress is considering the Build Back Better Act, which includes provisions that would stitch greenhouse gas emissions reduction into the priorities of state programs that receive federal funds for residential energy efficiency retrofits. To be eligible, state programs must include a plan that, among other things, “value[s] savings based on time, location, or greenhouse gas emissions.”136 Let us assume that this bill passes and prompts a reorientation of state residential energy efficiency programs toward emissions abatement so that participating states value the emissions avoided through federally sponsored energy efficiency investments. In states that embody the jurisdiction types discussed above, different emissions values would be appropriate. (a) Arkansas law does not presently impose any greenhouse gas emissions reduction requirements, so the SCC would be an appropriate value to apply there.137 (b) Washington State is bound, by 2050, to reduce greenhouse gas emissions 95% below 1990 levels and to achieve net-zero emissions economy-wide.138 This means that a MAC-based threshold is appropriate for valuing the emissions impact on energy efficiency investments. (c) Colorado law prescribes a 90% emissions reduction from 2005 levels by 2050 and directs agencies to pursue more ambitious emissions reductions if doing so would serve the public interest.139 It follows that a MAC-based threshold would be appropriate, unless

133. See Jayni Foley Hein & Caroline Cecot, Inst. for Pol’y Integrity, Coal Royalties 6-7 (2016) (explaining economic logic for incorporating externalities into royalty payments consistent with the policy logic underlying royalties generally); Jayni Foley Hein & Peter Howard, Inst. for Pol’y Integrity, Illuminating the Hidden Cost of Coal 1 (2015) (“Accounting for both methane and transportation externality costs would justify adding 70.1 percent to the current 12.5 percent surface-mine royalty rate This would justify a new royalty rate of 82.6 percent for federal surface-mined coal.”).
137. This would involve inclusion of the SCC in applications of the Total Factor Cost Test that the Arkansas Public Service Commission directs utilities to use estimate the value of a program to society.
139. See Memorandum, Colo. Legis. Council Staff, supra note 127.
exceeding that threshold were shown to be in the public interest, for instance, because doing so would yield greater net benefits. Finally, (d) Maryland’s Greenhouse Gas Emissions Reduction Act imposes an economy-wide emissions reduction target of 40% below 2006 levels by 2030, leaving 60% of 2006 emissions levels not subject to a reduction requirement and so leaving the obligations of particular sectors unclear. Maryland should, therefore, value residential energy efficiency using the SCC.141

Congestion charge. Several cities—London, Milan, Singapore, and Stockholm—have imposed congestion charges on motor vehicles.142 Congestion charges serve as a sort of entrance fee for motor vehicles seeking to drive in a designated portion of the city. Congestion charges can be designed to apply differentially so that they reflect vehicle weight, emissions intensity, timing, or other factors.143 New York law establishes 2050 as the binding deadline for economy-wide emissions to fall 85% below a 1990 baseline and to reach net zero. The same law—the Climate Leadership and Community Protection Act144—requires individual agency decisions conform to an overarching statewide emissions reduction target,145 but authorizes state agencies to employ the SCC or a MAC-based threshold to value greenhouse gas emissions.146 Depending on whether one interprets its emissions reduction target to be fully clear and binding, New York can be said to represent a version of jurisdiction (b) or (d) from the list above. If classified as (b), use of a MAC-based threshold would be more appropriate to calibrate the price level and evaluate the emissions impacts of the congestion charge; if (d), the version of the SCC adopted by New York State’s Department of Environmental Conservation should serve this purpose.147

Government procurements. An agency procuring a vehicle fleet can compare vehicles’ greenhouse gas emissions profiles as well as other factors like capital costs and expected maintenance costs. Completing this comparison would require monetizing the value of the emissions quantities associated with different bidders’ proposals. Federal agencies, which operate in a version of jurisdiction (a), should apply the SCC when comparing bids and for other purposes as well, such as assessing the environmental impacts of the procurement.148 In

143. For a discussion of the externalities potentially addressed by a congestion charge, see MATT BUTNER & BETHANY A. DAVIS NOLL, A PILEUP: SURFACE TRANSPORTATION MARKET FAILURES AND POLICY SOLUTIONS (2020).
145. Id. at 872 (Climate Leadership and Community Protection Act § 7(2)).
146. Id. at 868 (Climate Leadership and Community Protection Act § 2), codified at N.Y. ENV’T CONSERV. L. § 75-0113(2).
147. N.Y. STATE ENERGY RES. & DEV. AUTH. & RES. FOR THE FUTURE, supra note 47.
148. See, e.g., UNITED STATES POSTAL SERVICE, DRAFT ENVIRONMENTAL IMPACT STATEMENT, supra note 123.
Washington State, which, with a 95% emissions reduction commitment,149 resembles jurisdiction (b), the procuring agency should assign a value consistent with a MAC-based threshold derived from the state’s emissions reduction target. In Colorado, an example of jurisdiction (c),150 the agency should apply both, using the SCC as a sort of sensitivity analysis to indicate whether relying on the MAC-based value would forgo societal cost savings. In Maryland—an example of jurisdiction (d) with its commitment to reduce emissions 40% from 2005 levels by 2030151—the procuring agency should apply the higher of the SCC or a MAC-based value.

Conclusion

This Article has argued that the debate over whether to improve the SCC or cast it aside in favor of a MAC-based approach is part of a long-lived set of arguments over the formulation and application of environmental policy instruments. Framing recent criticisms of the SCC and rejoinders from its proponents in this way can help guide policymakers as they choose whether and how to use particular instruments to formulate and implement climate policy.

For instance, as with cost-benefit and cost-effectiveness analysis, as well as price- and quantity-oriented regulatory mechanisms, different policy contexts often favor use of one instrument or the other. Thus, adoption of a firm and fully specified emissions reduction target can make a MAC-based value more suitable than the SCC for formulating climate regulations. But where generic administrative legal requirements direct agencies to estimate the benefits of regulations in terms of harm caused or averted, agencies cannot rely on a MAC’s target-based analysis to justify regulations—only the SCC will do. These are just two examples of how context, including both rules and policy objectives, can inform instrument choice.

Another insight suggested by approaching the SCC-versus-MAC question as part of a larger and longer-lived debate is that resolution of disagreements over instrument choice often does not involve a winner that takes all, but a synthesis—some form of complementary pairing that makes use of both. With the SCC and MACs, as with the other instrument pairs, neither should be cast wholly aside as inherently and irretrievably flawed. This conclusion is not undermined by the potential for meaningful misalignment of the SCC and a MAC-based value. Indeed, that potential weighs in favor of using each to “stress test” the other to glean information about both the instruments themselves and the policies informed by their outputs.

149 WASH. REV. CODE § 70A.45.020 (2020).
150 See Memorandum, Colo. Legis. Council Staff, supra note 127.
151 MD. ENV’T CODE § 2-1204.1 (2017).